
1. Introduction

From the late 1990s to the year 2011, the worldwide
amount of poly(ethylene terephthalate) (PET) in-
creased rapidly from approximately 14 to 60 mil-
lion tons [1, 2]. Correspondingly, equivalent amounts
of PET-waste are generated. Since life cycle assess-
ment studies showed that re-utilization of PET has a
positive effect on energy balance and the reduction
of CO2 emissions, for ecological reasons, the need
of an appropriate PET-recycling is greater than ever
[3–7]. Thus, several PET-recycling methods have
been developed, which were partially reviewed in
the literature [8–15].
One of these methods is the incineration of the PET-
waste using the released heat of combustion (direct
energy recovery), which amounts to about 46 MJ·kg–1

[13, 14]. Another method, the pyrolysis of the PET-

waste is applied to produce a substitute of coal (car-
bonization) or aromatic and aliphatic compounds as
an alternative for fossil fuels (indirect energy recov-
ery). These applications are classified as energetic
recycling, since they both use the released thermal
energy either directly from incineration of the PET-
waste or indirectly from combustion of pyrolysis
products [16–31].
For material recycling, the PET-waste is used as an
additive in crushed form. In this application, it acts
as a partial substitute of natural raw materials such
as sand and other natural aggregates and helps reduc-
ing the consumption of such resources. It is mixed
into composite materials (e.g. asphalt, mortar or con-
crete) or other polymers to improve their mechanical
properties [32–65].
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Thermo-mechanical recycling represents another
method of re-utilization of PET-waste. Generally, the
PET-waste is re-melted without additives. Since this
procedure leads to a downcycling of the material due
to discoloration or thermal degradation, it is also re-
melted with specific additives (complementary col-
ors, inorganic materials or epoxy-chain extenders)
to prevent the downcycling [66–94].
In this review, downcycling is used in various mean-
ings. In a strict sense, downcycling means the dete-
rioration of the material properties of PET by dam-
aging or shortening the polymer chains of the poly-
ester. However, processes leading to the utilization
of PET in low value applications such as a filler ma-
terial where the material potential of PET is not fully
used can also be considered as some kind of ‘down-
cycling’ in a wider sense. Ultimately, thermal degra-
dation processes like incineration, pyrolysis or car-
bonization which lead to monomers and hence a total
loss of efforts for synthesis for virgin PET can also
be considered as ‘downcycling’. Hence, most ener-
getic and material recycling methods ultimately lead
to a downcycling of PET.
In contrast, chemical recycling methods offer the pos-
sibility of re-introduction of PET into the material
cycle without loss of quality by de-polymerizing
PET-waste into monomers. These monomers are used
for re-polymerization. Most frequently applied meth-
ods use water (hydrolysis), glycols (glycolysis),
amines (aminolysis) and alcohols (alcoholysis) for
de-polymerization of PET-waste under various reac-
tion conditions. However, these methods require high
temperature and high pressure conditions as well as
considerable amounts of solvents and degrading
agents for de-polymerization [95]. Further, chemical
recycling methods generally entail separation and
purification steps for product recovery. Thus, this
kind of chemical recycling imposes toxic and envi-
ronmentally hazardous issues.
In the present review a comprehensive survey of PET-
recycling methods is given, reviewing both conven-
tional and exceptional methods (carbonization of PET,
use of castor oil or ionic liquids for PET de-polymer-
ization). This review focuses on chemical recycling
methods with respect to the yields of the obtained
reaction products and their usability for value added
applications.

2. Classification of recycling poly(ethylene

terephthalate)

2.1. Energetic recycling

2.1.1. Pyrolysis

Pyrolysis of PET-waste was first described in 1982
by Day et al. [96]. It is an alternative to PET disposal
in landfills. In general, PET waste is pyrolysed with-
out further purification of the plastic waste. Pyrolysis
is carried out at temperatures between 200 and
900°C for 0.5 hours to 1hour [16–19, 21, 24–31, 97–
101]. The majority of pyrolyses were conducted to
produce aliphatic and aromatic hydrocarbons as an
alternative for fossil fuels or as a source for chemi-
cals [17, 19, 21, 24–31]. Other research on pyrolysis
was done to either model degradation kinetics or to
use PET-wastes in the production of coke for steel
making process [98, 100–103]. Finally, Urbanova et
al. [104] studied the influence of IR laser irradiation
for PET pyrolysis. As in conventional pyrolysis, they
obtained aliphatic and aromatic hydrocarbons.

2.1.2. Carbonization

Carbonization is a second method of pyrolysing
PET-waste. It is carried out at temperatures between
350–1550 °C for 0.5 to 18.5 hours [105–111]. The
major application of carbonization is the production
of active carbon as adsorbent materials for either
waste water or as CO2-scavenger [105, 108, 110,
111]. Carbonized PET-waste is also used as slag
foaming agent and as a substitute of coal in steel
making process [106, 107].

2.2. Sorting

Since PET-waste is often supplied in mixtures with
other polymers, PET has to be separated from these
polymers prior to re-processing. Therefore, several
methods have been developed and are described in
the literature. These methods comprise froth flota-
tion, wet shaking table, swelling or thermo-mechan-
ical procedures [112–123].

2.2.1. Application of PET as additive

A further use of recycled PET-waste after sorting is
its use as additive in stone mastic asphalt, cementi-
tious materials, mortars or concrete composites. The
PET-waste is mixed in crushed shape in the corre-
sponding materials to improve mechanical properties
of these composites. Moreover, this method is in-
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tended to reduce the weight of such composites,
when being used as material for the construction of
large buildings [32–64]. A second possibility of using
PET-waste as an additive is described by de Mello
et al. [65], who applied PET particles as reinforcing
component in polyurethane foams to improve the
mechanical strength of the material. Finally, Zou et
al. [124] studied the use of recycled PET as additive
for paper coatings. Although proposing an eco-friend-
ly alternative to energetic recycling methods and land-
filling disposal, this method remains a downcycling
application for PET-waste in the wider sense since
the potential of the material PET is not used to its full
extent in this low value application.

2.3. Thermo-mechanical recycling

2.3.1. Re-melting without additives

The simplest way of thermo-mechanical recycling is
re-melting the sorted PET-waste. This method is ap-
plied in bottle-to-bottle technologies, where sorted
PET-bottles are re-melted in crushed shape and re-
processed to bottles as beverage packaging. Several
studies have been conducted on thermal re-process-
ing PET. During this process, the polymer is exposed
to high temperatures, shear forces and pressures.
Thus, thermal degradation of PET occurs. As a con-
sequence, reduced thermal and mechanical proper-
ties of the re-processed material were the main find-
ings of these investigations (downcycling) [66–78].
Hence, a repeated thermal re-processing of PET-
waste finally leads to a downcycling of the material.

2.3.2. Re-melting with additives

To make re-utilization of recycled PET feasible, the
application of additives to PET-waste has emerged.
Since the collection of PET-waste entails generally
a mixture of differently colored PET-materials, such
thermally re-processed material leads to undesired
coloration of recycled PET. Therefore, the addition
of complementary colors to PET-waste has been ap-
plied to mask discoloration [79]. Although being an
approved procedure, this method probably limits the
use of the recycled PET. Likewise, additives were
developed to improve viscosity and impact strength
of recycled PET, but the recyclate was excluded from
food packaging in Europe [80].
Besides such additives, the addition of other poly-
mers (e. g. polyethylene, polypropylene) or inorganic
materials (clay minerals) has been applied for thermo-
mechanical PET recycling to improve mechanical

properties of the recyclate [81–94]. In addition to
blending PET with a second polymer, the use of com-
patibilizers such as ethylene vinyl acetate, ethylene-
butyl acrylate-glycidyl methacrylate copolymer, poly
(styrene-ethylene/butylene-styrene) and epoxy-chain
extenders has been applied to further improve me-
chanical properties [82–86]. Although the use of ad-
ditives to PET can improve properties of thermo-me-
chanically recycled PET, it ultimately leads to a
downcycling of the material, since this material be-
comes increasingly difficult to be recycled again due
to the heterogeneous and inherent composition of
PET with the other components.

2.4. Chemical recycling

2.4.1. Ionic liquids

The application of ionic liquids for de-polymeriza-
tion was first described in the year 2000 by Adams
et al. [125]. This method was developed to avoid the
drawbacks of former methods like methanolysis (high
pressure and temperature), glycolysis (heteroge-
neous reaction products) or acidic and alkaline hy-
drolysis (pollution problems) to provide an eco-
friendly degrading agent for polymers and to enable
degradation under moderate reaction conditions. How-
ever, no application of the obtained reaction products
was described. The general reaction scheme is de-
picted in Figure 1a [126].
Wang et al. [126] depolymerized PET with an excess
of the ionic liquid at 120– 200 °C for 6–10 hours.
After the reaction was finished, the residual PET was
removed, the degradation product precipitated by the
addition of water and steam extracted for purifica-
tion. They used different ionic liquids such as
1-butyl-3-methylimidazolium tetrachloroaluminate
([bmim]+AlCl4–), 1-butyl-3-methylimidazolium chlo-
ride ([bmim]+Cl–), 1-butyl-3-methylimidazolium bro-
mide ([bmim]+Br–), 1-ethyl-3-methylimidazolium
bromide ([emim]+Br–), 1-butyl-3-methylimidazolium
tetrafluoroborate ([bmim]+BF4

–), 1-butyl-3-methylim-
idazolium hexafluorophoasphate ([bmim]+PF6

–),
1-butyl-3-methylimidazolium trifluoroacetate
([bmim]+CF3COO–), 1-butyl-3-methylimidazolium
acetate ([bmim]+CH3COO–) (Figure 1b). Since the
ionic liquid [bmim]+Cl– was most stable and PET was
less soluble in the other liquids, only the reaction
with [bmim]+Cl– was studied. Further, they studied
the use of zinc acetate, tetrabutyl titanate and solid
superacid as catalysts on the solubility of PET in the
ionic liquid, but found that solubility was decreased
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independent of the applied catalyst. As expected,
they found an increased degradation rate with in-
creasing reaction temperature. The molecular weight
(characterized by GPC) of the undefined oligomers
was in the range of 777 to 790 g·mol–1. The yield of
these products was not determined. The main objec-
tives of their research were the study of the reaction
kinetics and the recyclability of the ionic liquids for
the de-polymerization reaction of PET in terms of an
eco-friendly degrading agent as mentioned above.

2.4.2. Castor oil

The application of castor oil for de-polymerization
was first described in the year 1999 by Kržan [127].
This method was developed to provide a renewable

substitute of petrochemical agents (for example, gly-
cols) for PET de-polymerization. After de-polymer-
ization, the reaction products were aimed for the
preparation of polyurethane systems. The general re-
action scheme is depicted in Figure 2 [128].
Beneš et al. [128] depolymerized PET with castor
oil at 230–240°C for 0–2 hours assisted microwaves.
After the reaction was finished, solid residues were
removed by vacuum filtration. Further, they applied
zinc acetate, sodium carbonate and sodium hydrogen
carbonate as catalysts. They found that the optimum
reaction temperature range is between 230 and
240°C, whereas below 230°C almost no reaction was
observed. In contrast, reaction temperatures above
240°C lead to undesired side reactions of the castor
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Figure 1. Reaction of the ionic liquid 1-butyl-3-methylimidazolium chloride ([bmim]+Cl–) with PET (a), Applied ionic liq-
uids (b) [126]



oil (dehydration, hydrolysis and transesterification).
Moreover, zinc acetate seemed to be an efficient cat-
alyst compared to sodium carbonate or sodium hy-
drogen carbonate. However, it was difficult to deter-
mine characteristic molecular weights (characterized
by GPC) due to the excessive amount of applied cas-
tor oil, but it was stated, that no higher molecular
weight PET-oligomers were obtained. Even with
precise control of the reaction temperature a hetero-
geneous mixture of reaction products were obtained.

2.4.3. De-polymerization of PET using enzymes

The degradation of polymers using enzymes was
first described in the year 1977 by Tokiwa and Suzuki
[129]. As the use of ionic liquids and castor oil, this
bio-chemical method was developed to provide an
eco-friendly procedure of polymer recycling in con-
trast to conventional chemical recycling methods like
methanolysis (high pressure and temperature), gly-
colysis (heterogeneous reaction products) or acidic
and alkaline hydrolysis (pollution problems). The
aimed application of reaction products after de-poly-
merization is the surface functionalization of poly-
ester materials. Generally, PET was incubated in the
enzymatic solution at temperatures between 30 to
60°C for a period of time ranging from 3 to 14 days.
Residual PET and solution were separated for prod-
uct characterization [130–133].
As shown in Table 1, different enzymes such as sac-
charomonospora viridis cutinase polyesterase, ther-

mobifidia fusca hydrolase, cutinase and lipase were
applied for PET degradation. Mueller discussed the
general applicability of thermobifidia fusca hydro-
lase for PET de-polymerization without mentioning
a main degradation product or its yield [131].
Donelli et al. [132] only studied the surface mor-
phology of PET treated with cutinase and did not
make a qualitative or quantitative statement of pos-
sible reaction products. In contrast, Zhang et al. [133]
studied the application of lipase as degrading agent
for diethylene glycol terephthalate (DGTP) and PET
at 30°C and 14 days. They found that lipase is capa-
ble of fully converting DGTP to terephthalic acid
(TPA), whereas the degradation of PET to TPA was
negligible.
Finally, Kawai et al. [130] used saccharomonospora
viridis cutinase polyesterase for degradation of PET
at reaction conditions of 63°C and 3 days. With this
enzyme it was possible to obtain 10–27% of TPA
form PET degradation.
In these references, the authors conclude, that de-
polymerization of PET using enzymes is generally
possible as an eco-friendly alternative to convention-
al chemical recycling methods, since the latter re-
quire high pressure and temperature equipment and
considerable amounts of toxic as well as hazardous
chemicals. However, efficiency is rather low with re-
spect to complete de-polymerization of PET and
hence quantitative recovery of homogeneous reac-
tion products for re-use is not possible.
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2.4.4. Alcoholysis

Alcoholysis for de-polymerization of PET was first
described in the year 1991 by Wang et al. [134]. This
method was developed to avoid the drawbacks of the
methods like glycolysis (heterogeneous reaction prod-
ucts) or acidic and alkaline hydrolysis (pollution prob-
lems) to provide a renewable and eco-friendly degrad-
ing agent for polymers [135]. The general reaction
scheme is depicted in Figure 3a.
Generally, PET is de-polymerized with an excess of
an alcohol to yield corresponding esters of tereph-
thalic acid and ethylene glycol [136].
Fávaro et al. [135] completely de-polymerized PET
with excess supercritical ethanol at 255 °C and
116 bar for 30 to 120 minutes. They obtained dieth-
ylene terephthalate with 80% yield (Table 2) as mono -
mer for PET synthesis. However, the obtained ethyl-
ene glycol was only suitable for an impaired appli-
cation as cooling liquid due to its reduced purity.
Mendes et al. [34] used pentaerythrytol (PENTE) for
alcoholysis of PET at 250°C for 10 minutes. They
melt-mixed PET with different concentrations of
PENTE and found with increasing amount of PENTE
the trend of formation from branched, undefined low
molecular weight oligomers to the monomer bis(tri-
hydroxy neopentyl) terephthalate (BTHNPT). This

monomer could be used as additive for asphalt or as
adhesives.
Nikje and Nazari studied alcoholysis of PET using
1-butanol, 1-pentanol and 1-hexanol. They refluxed
PET with excess alcohol under microwave irradiation
to accelerate complete de-polymerization of PET and
obtained terephthalic acid with high purity in yields
between 84 and 96% [137]. The use of microwave
irradiation provided short reaction times and no fur-
ther oxidation of the side product ethylene glycol. In
this case, the aimed application of reaction products
after de-polymerization was the synthesis of virgin
PET.
Likewise, Liu et al. [136] used excess 1-butanol for
alcoholysis of PET and studied the influence of dif-
ferent catalysts and their re-useability on PET con-
version, but did not mention any aimed application
of obtained reaction products after de-polymeriza-
tion. Reaction was carried out at 205°C for 480 min-
utes to give the monomer dibutyl terephthalate
(DBTP). Highest yield of 95% was obtained using
(3-sulfonic acid)-propyltriethylammonium chloroz-
incinate as catalyst.
In contrast to the previous alcoholytic methods, Dutt
and Soni applied excess 2-ethyl-1-hexanol for PET-
alcoholysis to produce plasticizers for nitrile rubber
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Table 1. Reaction conditions and yields of enzymatic degradation of PET

aTPA: Terephthalic acid

Reaction product
Yield

[%]
Enzyme

Reaction

temperature

[°C]

Reaction time

[days]
Reference

Monomer, TPAa 10 to 27 Saccharomonospora viridis cutinase polyesterase 63 3 [130]

Monomer, TPAa negligible Lipase 30 14 [133]

Not given not given Thermobifidia fusca hydrolase 55 not given [131]

Not given not given Cutinase 40 0.1 [132]

Figure 3. Chemical recycling methods of PET ((a) Alcoholysis, (b) Methanolysis)
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Table 2. Reaction conditions and yields of alcoholysis, methanolysis and hydrolysis of PET

aDETP: Diethyl terephthalate. bTPA: Terephthalic acid. cDBTP: Dibutyl terephthalate. dBTHNPT: Bis(tri-hydroxy neopentyl)
terephthalate. eDMTP: Dimethyl terephthalate. fNo pressure was given in the experimental section, thus, atmospheric pressure was
assumed. gReaction was carried out in a microwave reactor and reaction mixture was heated until the mixture was completely molten.
hTemperature during a differential scanning calorimetry measurement.

Reaction product
Yield

[%]
Reagent

Reaction

temperature

[°C]

Reaction

time

[min]

Pressure

[bar]
Catalyst Reference

Monomer, DETPa 80 Ethanol 255 30–120 116 none [135]
Monomer, TPAb 84 1-Hexanol 100 not given 1f Potassium hydroxide [137]
Monomer, DBTPc 95 1-Butanol 205 480 1f Acidic ionic liquids [136]
Monomer, TPAb 96 1-Butanol 100 not given 1f Potassium hydroxide [137]
Monomer, TPAb 96 1-Pentanol 100 not given 1f Potassium hydroxide [137]
Monomer, BTHNPTd not given Pentaerythrytol 250 10 1f Zinc acetate [34]
Oligomers,

[250–1430 g·mol–1]
not given

Titanium
alkoxide

270–280 1 to 20 1f none [139]

Oligomers, 
[450–900 g·mol–1]

not given
2-Ethyl-1-

Hexanol
170–190 600–720 1f none [138]

Monomer, DMTPe 60 Methanol 270 0–90 1–150 none [142]
Monomer, DMTPe 80 Methanol 300 0–90 9.8 none [141]
Monomer, DMTPe 80 Methanol 300–350 2–120 200 none [144]
Monomer, DMTPe 80 Methanol 300 2–120 200 none [145]
Monomer, DMTPe 88 Methanol 200 120 not given Aluminium triisopropoxide [146]
Monomer, DMTPe 98 Methanol 300 0–90 147 none [141]
Monomer, DMTPe 98 Methanol 330 0–90 1–150 none [142]
Monomer, DMTPe 60–95 Methanol 250–270 0–60 85–140 Zinc acetate [148]
Monomer, DMTPe not given Methanol 160–200 0–60 16 Zinc acetate [147]

Monomer, TPAb 85
H2O, Sodium

Hydroxide
99 150 1f none [166]

Monomer, TPAb 90 H2O 115–145 0–420 1f [(CH3)3N(C16H33)]3[PW12O40] [150]
Monomer, TPAb 90 H2O 250–420 0–60 480 none [154]
Monomer, TPAb 91 H2O 220–300 6 to 60 32 Zinc acetate [152]
Monomer, TPAb 96 H2O 200 30–240 16 none [153]

Monomer, TPAb 96
H2O, Sodium

Hydroxide
Molten stateg 6 1f none [168]

Monomer, TPAb 98
H2O, Sodium

Hydroxide
120–150 60–420 1f none [163]

Monomer, TPAb 98
H2O, Sodium

Hydroxide
70–95 300–360 1f Trioctyl ammonium bromide [165]

Monomer, TPAb 99 H2O 205 6–240 16 none [155]

Monomer, TPAb 99 H2O 190 10 1f Hydrotalcite [156]

Monomer, TPAb 99
H2O, Sodium

Hydroxide
90–98 0–60 1f Tetrabutyl ammonium

bromide
[164]

Monomer, TPAb 99
H2O, Sodium

Hydroxide
90 600–4200 1f Tetrabutyl ammonium iodide [167]

Monomer, TPAb 100
H2O, Sodium

Hydroxide
180 30 1f Trioctylmethyl ammonium

bromide
[157]

Monomer, TPAb 100
H2O, Sulfuric

Acid
150 60–360 1f none [161]

Monomer, TPAb not given H2O 100–250 120 Autogen none [158]
Monomer, TPAb not given H2O, Nitric Acid Reflux not given 1f none [160]
Not given not given H2O 140–180 not given 10 none [151]

Not given not given
H2O, Sulfuric

Acid
30 6–120 1f none [159]

Not given not given
H2O, Sodium

Hydroxide
Ambient

temperature
15 1f none [162]

Not given not given
H2O, Sodium

Hydroxide
120 not given 1f none [169]

Not given not given
H2O, Sodium

Hydroxide
250h not given 1f none [170]

Oligomers,
[540 g·mol–1]

97 H2O 170 180 1f Zinc acetate [149]

Oligomers,
[2047 g·mol–1]

99 H2O 170 180 1f Potassium hydroxide [149]



and nitrile rubber polyvinyl chloride (PVC) blends.
The reaction was carried out at 170–190°C for 10–
12 hours. Complete alcoholysis of PET was reached
after 12 hours [138]. However, the composition of the
obtained reaction mixture with respect to monomers
or oligomers is not clarified. Although a molecular
structure of low molecular weight oligomers (450–
900 g·mol–1) is postulated, it is not clear whether and
how many monomers were obtained, since reaction
was complete after 12 hours.
Chabert et al. [139] used titanium tetra-n-butoxide
and titanium tetra-n-propoxide for PET de-polymer-
ization. Concentration of titanium tetra-n-butoxide
and titanium tetra-n-propoxide were 22 and 50% in
the PET-mixture, which was extruded at 270–280°C.
They found that chain scission of PET proceeded
faster using titanium tetra-n-propoxide compared to
titanium tetra-n-butoxide. They further studied the
number of active alkoxide-groups in corresponding
titanium tetra-n-alkoxides and found that mainly two
alkoxide-groups of the titanium tetra-n-alkoxide
were involved in the chain scission reaction of PET.
Mixtures of undefined low molecular weight oligo -
mers in the range between 250 and 1430 g·mol–1 were
obtained. However, they did not mention any aimed
application of reaction products after de-polymeriza-
tion. This procedure is advantageous in contrast to
prior described solvent based procedures, which re-
quired additional separation and purification steps.
However, functionality of PET-oligomers was limited
due to alkyl end-groups.
Among the alcoholysis methods, reaction with
methanol has gained special importance because of
the low price and the availability of methanol.
Methanolysis for de-polymerization of PET was first
described in the year 1962 by Heisenberg et al. [140].
The application of the reaction products after de-
polymerization was to provide the monomers for syn-
thesis of virgin PET. The general reaction scheme is
depicted in Figure 3b.
Generally, PET is de-polymerized with an excess of
methanol at 160–350°C (Table 2) to yield the mono -
mer dimethyl terephthalate (DMTP). To increase the
yield of DMTP and to shorten reaction times high pres-
sures (9–200 bar, Table 2) are applied [141–148].
Genta and coworkers [141, 142] studied the effect of
supercritical methanol compared to vapor methanol
for PET de-polymerization. They found that de-poly-
merization proceeds faster in supercritical methanol
than in vapor methanol. The reaction product consist-

ed of a mixture of bis(hydroxy-ethylene) terephtha-
late (BHET), methyl-2-hydroxy ethylene terephtha-
late (MHET) and dimethyl terephthalate (DMTP). The
yield of the main product DMTP was around 80%.
Furthermore, the energy consumption of the super-
critical methanolysis (2.35·106 kJ·kmol–1) was lower
than of the vapor methanolysis (2.84·106 kJ·kmol–1).
Goto reviewed the general applicability of supercrit-
ical fluids for de-polymerization, including methanol.
Although supercritical methanol was suitable for
PET de-polymerization and yielded DMTP as the
main reaction product (yield 80%), the reaction mix-
ture also consisted of BHET and MHET and hence
entailed further purification steps [143].
Goto and coworkers [144, 145] studied the reaction
kinetics during supercritical methanolysis of PET.
Reaction was carried out at 300–350°C at 200 bar
(Table 2). Beside terephthalic acid monomethyl ester
(TAMME), MHET and BHET, they obtained DMTP
as main product in yields of 80%.
Likewise, Yang et al. [148] studied the effect of re-
action temperature and time during supercritical
methanolysis of PET (Table 2). Excess methanol was
used for PET de-polymerization. They found that the
extent of the reaction increased with increasing tem-
perature and time. The reaction product consisted of
DMTP, MHET, BHET and their dimers, which entailed
further purification steps of the monomer DMTP.
The yield of DMTP ranged from 60–95%.
Kurokawa et al. [146] studied the effect of alumini-
um tri-isopropoxide (ATIP) as catalyst and the sol-
vent mixture of methanol and toluene on methanol-
ysis of PET. Reaction was carried out at 200 °C
without high pressure conditions (Table 2). With the
application of the catalyst ATIP, the yield of the main
product DMTP was raised to 67%. Finally, the ap-
plication of ATIP combined with the solvent mixture
methanol and toluene, the yield of DMTP was max-
imized to 88%.
Beside the use of supercritical methanol or addition-
al application of a catalyst for methanolysis, Siddiqui
et al. [147] studied the influence of microwave as-
sisted methanolysis of PET in the temperature range
from 160 to 200°C with the addition of zinc acetate
as catalyst. They found that the amount of de-poly-
merized PET increased with increasing temperature
and increasing microwave power from 50 to 200 W.
The characterized main product was DMTP, which
was not quantified by the authors.
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2.4.5. Hydrolysis

Hydrolysis of PET can be classified into neutral,
acidic and alkaline hydrolysis (Table 2). The general
reaction scheme of neutral and acidic hydrolysis is
depicted in Figure 4. Generally, the main application
of obtained reaction products after de-polymeriza-
tion was to provide monomers for the synthesis of
virgin PET. Neutral hydrolysis of PET is generally
conducted with excess water at high temperature
ranges between 115–420°C and high pressure ranges
from 10 to 480 bar. Correspondingly, reaction times
are up to 7 hours [149– 158].
Güçlü et al. [149] found that the solvent xylene pro-
vided greater de-polymerization of PET, whereas the
catalysts zinc acetate or potassium hydroxide had
negligible effect. They obtained low molecular weight
oligomers (540+ 2047 g·mol–1, Table 2) with yields
of 97+99%.
Other studies investigated the effects of different re-
action parameters on neutral hydrolysis of PET, such
as catalysts (zinc acetate, potassium hydroxide, phase
transfer catalyst, hydrotalcite) [151, 153, 156], steam
or plasma treatment [154, 155] and microwave irra-
diation [157]. Although having different foci in these
papers, the monomer TPA was obtained as reaction
product in yields of 90–100% (Table 2).
In contrast to neutral hydrolysis, acidic hydrolysis of
PET is generally conducted with excess acid (sulfu-
ric or nitric acid) at ambient temperature and atmos-
pheric pressure. Reaction times are in between 6 and
360 minutes [159, 160]. Yoshioka et al. [161] conduct-
ed acidic hydrolysis at 150 °C. de Carvalho et al.
[159] completely de-polymerized PET to yield TPA.
Kumar and Rajeswara Rao studied kinetics of acidic
hydrolysis and Kumar and Rao [160] and Yoshioka
et al. [161] examined the re-usability of dilute sulfuric
acid for the de-polymerization of PET. In both stud-

ies, TPA was obtained. Although neutral and acidic
hydrolysis of PET gave high yields of the mono mer
TPA, purification of the reaction product is solvent
consuming, and hence imposes environmental issues.
For the alkaline hydrolysis of PET-waste metal hy-
droxides are used. This method yields the correspon-
ding metal salts of terephthalic acid. By a subsequent
acidification of the formed salt, pure terephthalic
acid is obtained. Alkaline hydrolysis of PET-waste
is generally conducted with excess metal hydroxide
(sodium or potassium hydroxide) at temperature
ranges between 70–150 °C. Reaction times are be-
tween 6 minutes and 70 hours (Table 2). The general
reaction scheme of alkaline hydrolysis is depicted in
Figure 4 [162–171].
Caparanga et al. [162] used alkaline washing as pre-
treatment of PET-waste before actual recycling.
Karayannidis et al. [163] completely de-polymerized
PET to obtain pure TPA in yields of 98%.
Kosmidis et al. [165], Mishra et al. [166], Karayan-
nidis et al. [170] studied degradation kinetics of al-
kaline hydrolyis of PET. Kosmidis et al. [165] used
a catalyst (trioctyl ammonium bromide) and ob-
tained a TPA yield of 98%, whereas Mishra et al.
[166] did not use a catalyst and obtained a TPA yield
of 85%. Karayannidis et al. [170] did not determine
any yield of any reaction product in alkaline PET hy-
drolysis.
Additionally to conventional alkaline hydrolysis,
Khalaf and Hasan [164], Paliwal and Mungray [167],
Shafique et al. [168] additionally used microwave or
ultrasound irradiation for de-polymerization of PET.
Although Khalaf and Hasan as well as Paliwal and
Mungray used a catalyst (tetra butyl ammonium bro-
mide, tetra butyl ammonium iodide), their TPA yield
of 99% was not significantly greater than the yield
of Shafique et al. [168] with 96%.
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Figure 4. Chemical recycling methods of PET (Neutral, acidic and alkaline Hydrolysis)



Finally, Rosmaninho et al. [169] used alkaline hy-
drolysis for surface modification of PET not to yield
PET monomers but to synthesize a cation exchange
material as adsorbent for cationic contaminants. They
compared this procedure with an acid surface mod-
ified PET. They found that acid modification gener-
ates more efficiently carboxyl-groups as potential
cation exchange positions.
In most cases of the above described procedures, re-
action products needed to be separated and purified
after complete reaction.

2.4.6. Glycolysis

The general reaction scheme of PET glycolysis is de-
picted in Figure 5. Glycolysis of PET leads to the
formation of PET-monomers and low molecular
weight PET-oligomers (Table 3). Thus, a main ap-
plication of the reaction products after de-polymer-
ization was to provide monomers for the synthesis
of virgin PET. The main process parameters of gly-
colysis are reaction temperature (110–270 °C) and
reaction time (up to 15 hours) [99, 172–199]. In con-
trast to methanolysis, there is only little use of high
pressure for glycolysis of PET [10, 180, 200].
Generally, the degrading agent was used in excess
for de-polymerization of PET. Predominantly, ethyl-
ene glycol was used as degrading agent to give main-
ly the PET-monomer bis(hydroxy-ethylene) tereph-
thalate (BHET) in yields between 46 to 100% [10,
11, 99, 184, 185, 187–189, 191–193, 195, 198, 200,
201–214]. Saint-Loup and co-workers also used eth-
ylene glycol in reactive extrusion to produce low
molecular weight oligomers (1450+1800 g·mol–1)
without quantification of their yields for synthesis of
PET-polycarbonate polyesters. However, these oligo -
mers had to be separated and purified for further pro-
cessing, since the crude reaction product consisted
of a heterogeneous mixture of BHET-analoga [215–
218].
The second most common degrading agent for gly-
colysis was diethylene glycol. Here, both BHET and
low molecular weight oligomers (dimers to hexam-

ers of BHET) were obtained, but no quantification
of the yield was made [64, 173, 174, 177–179, 190,
181, 219, 220].
Further, but less applied chemicals for PET-glycol-
ysis were propylene glycol, diethanol amine and tri-
ethanol amine. Using propylene glycol, BHET-ana-
logues were obtained, but not quantified, since these
intermediates were directly used for synthesis of un-
saturated polyester resins [186, 190, 221]. Application
of diethanol amine and triethanol amine yielded low
molecular weight oligomers (900+1130 g·mol–1, not
quantified) for the use as dispersants or synthesis of
epoxy resin. Again, additional separation and purifi-
cation of the reaction products were necessary [176,
196, 197].
The least applied diols were BHET, neopentyl glycol
(NPG), tetraethylene glycol (TEEG), poly(ethylene
glycol) (400 g·mol–1), poly(tetramethylene oxide)
(650 g·mol–1) and terpoly[poly(oxyethylene)-poly-
(oxypropylene)-poly(oxyethylene)] (1100 g·mol–1).
In case of NPG, the corresponding monomer bis(neo -
pentyl ethylene) terephthalate was obtained in a yield
of 70%. With the other diols low molecular weight
oligomers were obtained, since de-polymerization
agents were already of low molecular weight. These
reaction products were used for the synthesis of co-
polymers containing polyester species. Additionally,
a consecutive separation and purification of the ob-
tained products was necessary [175, 182, 194].
Another parameter for PET-glycolysis is the appli-
cation of a catalyst. A various number has been used
for PET-glycolysis and is listed in Table 3. The most
important catalysts were zinc acetate and manganese
acetate [64, 173–175, 182–186, 192, 193, 200, 202–
204, 206, 208, 210, 211, 213, 219]. Further catalysts,
but less used metal acetate catalysts, than the afore-
mentioned ones, are cobalt and lead acetate [192,
205, 211]. Baliga and Wong studied the influence of
the cation zinc, manganese, cobalt and lead on the
catalytic effect of corresponding metal acetates on
PET-glycolysis. They found that de-polymerization
increased in the order Pb2+ < Co2+ < Mn2+ < Zn2+.
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Figure 5. Chemical recycling methods of PET (Glycolysis)
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Table 3. Reaction conditions and yields of PET glycolysis

Reaction

product

Yield

[%]
Reagent

Reaction temperature

[°C]

Reaction time

[hours]

Pressure

[bar]
Catalyst Reference

Monomers 0.3 EGa 300 0.4–0.8 11 none [10]

Monomers 2.5 EGa 350 0.4–0.8 25 none [10]

Monomers 25 EGa 80–200 15 1q ZnSO4 [192]

Monomers 46 EGa 150–190 1 to 4 1q Cu(OAc)2-[Bmim][OAc]r [194]

Monomers 54 EGa 150–190 1 to 4 1q Zn(OAc)2-[Bmim][OAc]s [194]

Monomers 57 EGa 196 9 1q FeCl2 [190]

Monomers 60 EGa 196 8 1q Na2SO4 [186]

Monomers 60 EGa 196 8 1q Na2SO4 [187]

Monomers 60 EGa 196 8 1q Zeolithe [186]

Monomers 61 EGa 196 1 1q Na2CO3 [203]

Monomers 61 EGa 196 9 1q LiCl [190]

Monomers 61 EGa 196 9 1q MgCl2 [190]

Monomers 63 EGa 230–300 0.7–1.3 1q Co3O4 [11]

Monomers 64 EGa 50–175 0.5–2 1q [bmim]Brt [213]

Monomers 65 EGa 80–200 15 1q Zinc stearate [192]

Monomers 67 EGa 230–300 0.7–1.3 1q ZnO [11]

Monomers 68 EGa 190 8 1q none [188]

Monomers 70 EGa 196 1 to 8 1q Zinc acetate [205]

Monomers 70 EGa 196 1 to 8 1q Na2CO3 [205]

Monomers 70 NPGb 200–220 6 1q Zinc acetate [181]

Monomers 72 EGa 196 9 1q Didymium chloride [190]

Monomers 73 EGa 196 9 1q ZnCl2 [190]

Monomers 74 EGa 196 1 1q Zinc acetate [171]

Monomers 74 EGa 196 1 1q Na2CO3 [171]

Monomers 74 EGa 196 1 1q NaHCO3 [171]

Monomers 74 EGa 196 1 1q BaOH [171]

Monomers 74 EGa 230–300 0.7–1.3 1q Mn3O4 [11]

Monomers 75 EGa 198 10 1q Zinc acetate [191]

Monomers 75 EGa 198 10 1q Lead acetate [191]

Monomers 75 EGa 198 10 1q Manganese acetate [191]

Monomers 75 EGa 198 10 1q Cobalt acetate [191]

Monomers 75 EGa 180 8 1q Zinc acetate [183]

Monomers 75 EGa 180 8 1q Lead acetate [183]

Monomers 75 EGa 180 8 1q Manganese acetate [183]

Monomers 75 EGa 180 8 1q Cobalt acetate [183]

Monomers 76 EGa 196 1 1q Zinc acetate [203]

Monomers 78 EGa 190 3.5 hours 1q TBDu [197]

Monomers 78 EGa 190 not given 1q Cyclic amidine [200]

Monomers 78 EGa 80–200 15 1q Zinc acetate [192]

Monomers 79 EGa 196 1.50 1q Zn/Al-hydrotalcite [208]

Monomers 80 EGa 165–196 0–10 1q Na2CO3 [211]

Monomers 80 EGa 165–196 0–10 1q NaHCO3 [211]

Monomers 80 EGa 165–196 0–10 1q Na2SO4 [211]

Monomers 80 EGa 165–196 0–10 1q K2SO4 [211]

Monomers 80 EGa 195–220 2.5–3.5 1q Zinc acetate [212]

Monomers 80 EGa 196 not given 1q Zinc acetate [202]

Monomers 80 EGa 196 not given 1q Na2CO3 [202]

Monomers 81 EGa 230–300 0.7–1.3 1q ZnCo2O4 [11]

Monomers 89 EGa 230–300 0.7–1.3 1q CoMn2O4 [11]

Monomers 90 EGa 300 0.6–1.3 11 γ-Fe2O3 [199]

Monomers 92 EGa 197 3 to 4 1q Zinc acetate [206]

Monomers 92 EGa 230–300 0.7–1.3 1q ZnMn2O4 [11]

Monomers 94 EGa 450 0.4–0.8 153 none [10]

Monomers 98 EGa 198 0.5–2.5 1q Zinc acetate [210]

Monomers 98 EGa 198 0.5–2.5 1q Lead acetate [210]

Monomers 98 EGa 198 0.5–2.5 1q Manganese acetate [210]
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Table 3. Reaction conditions and yields of PET glycolysis (1. continue)

Reaction product
Yield

[%]
Reagent

Reaction

temperature

[°C]

Reaction

time

[hours]

Pressure

[bar]
Catalyst Reference

Monomers 98 EGa 198 0.5–2.5 1q Cobalt acetate [210]

Monomers 100 EGa reflux 0.5 1q Zinc acetate [209]

Monomers not given DEGc 200–220 4 1q Manganese acetate [176]

Monomers not given DEGc 180 0.1 1q Manganese acetate [219]

Monomers not given DEGc 240 2 1q Zinc acetate [173]

Monomers not given EGa reflux 1 1q Zinc acetate [172]

Monomers not given DEGc 240 0.02 1q Zinc acetate [218]

Monomers not given EGa 200 not given 1q none [77]

Monomers not given EGa 110 not given 1q Cobalt acetate [204]

Monomers not given EGa 110–190 0–2 1q Manganese acetate [99]

Monomers not given EGa 220 7 to 8 1q Zinc acetate [201]

Monomers not given EGa 198 3 1q Zinc acetate [207]

Monomers not given EGa 198 3 1q Manganese acetate [207]

Monomers not given EGa 196 not given 1q NaHCO3 [202]

Monomers not given EGa 196 not given 1q Na2SO4 [202]

Monomers not given EGa 196 not given 1q K2SO4 [202]

Monomers not given EGa 196 1 to 8 1q NaHCO3 [205]

Monomers not given EGa 196 1 to 8 1q Na2SO4 [205]

Monomers not given EGa 196 1 to 8 1q K2SO4 [205]

Monomers not given EGa 190 8 1q Zinc acetate [184]

Monomers not given DEGc 190 8 1q Zinc acetate [184]

Monomers not given PGd 190 8 1q Zinc acetate [184]

Monomers not given PGd 235 5 2 to 5 none [179]

Monomers not given PGd 190+210 6+1 1q Tetrabutoxy titanium [220]

Monomers not given PGd 190 8 1q Zinc acetate [185]

Not given not given DEGc 210 not given 1q Zinc acetate [64]

Not given not given PGd 210 not given 1q Zinc acetate [64]

Not given not given DPGe 210 not given 1q Zinc acetate [64]

Not given not given BGf 210 not given 1q Zinc acetate [64]

Not given not given DEGc 200–220 6 1q Manganese acetate [180]

Not given not given PGd 200–220 6 1q Manganese acetate [180]

Not given not given TEGg 200–220 6 1q Manganese acetate [180]

Not given not given EGa 190 8 1q Zinc acetate [182]
Oligomers

[2840 g·mol–1]
17 PTMOh 200–270 8 1q Titanium tetra isopropoxide [193]

Oligomers
[1380 g·mol–1]

18 PEGi 200–270 8 1q Titanium tetra isopropoxide [193]

Oligomers
[1120 g·mol–1]

20 TEEGj 200–270 8 1q Titanium tetra isopropoxide [193]

Oligomers
[2300 g·mol–1]

23 Pluronic L31k 200–270 8 1q Titanium tetra isopropoxide [193]

Oligomers
[1131 g·mol–1]

not given TEAl 190–200 3 1q Manganese acetate [175]

Oligomers
[1360 g·mol–1]

not given BHETm 250 2 1q Zinc acetate [174]

Oligomers
[1450 g·mol–1]

not given EGa 270 not given 1q none [214]

Oligomers
[1450 g·mol–1]

not given EGa 270 not given 1q none [215]

Oligomers
[1450 g·mol–1]

not given EGa 270 not given 1q none [217]

Oligomers
[1648 g·mol–1]

not given PEGi 190–200 8 1q none [189]

Oligomers
[1800 g·mol–1]

not given EGa 270 not given 1q none [216]

Oligomers
[210–595 g·mol–1]

not given EGa 170+190 1 to 6 1q Zinc acetate [199]



These results were confirmed by Ghaemy and Moas-
saddegh as well as Goje and Mishra [184, 192, 211].
Pingale et al. [191] also studied the influence of dif-
ferent cations, namely zinc, lithium, didymium, mag-
nesium and iron, on the catalytic effect of respective
chlorides in the glycolysis of PET. They found zinc
chloride to be the most effective catalyst yielding
73% BHET, followed by didymium chloride, mag-
nesium chloride, lithium chloride and ferric chloride.
In contrast, Carné Sánchez and Collinson [193] stud-
ied the catalytic effect of zinc catalysts on PET-gly-
colysis with different anions, namely acetate, stearate
and sulfate. They found zinc acetate to be the most ef-
fective catalyst (Table 3, 78% BHET), followed by
zinc stearate (Table 3, 65% BHET) and finally zinc
sulfate (Table 3, 25% BHET). Analogously, Pingale
and Shukla [172], Duque-Ingunza and coworkers
[203, 204, 206, 212] studied PET-glycolysis using
different sodium catalysts with different anions (car-
bonate, bicarbonate and sulfate). The effectiveness of
the sodium catalysts on glycolysis yielding BHET

decreased in the following order: sodium bicarbon-
ate > sodium carbonate > sodium sulfate.
Finally, there are only few reports about the use of
very special catalyst for glycolysis. Al-Sabagh et al.
[195] and Alnaqbi et al. [214] applied ionic liquids
(1-butyl-3-methylimidazolium bromide or 1-butyl-
3-methylimidazolium acetate as co-catalyst) for
complete glycolysis of PET. Further, Fukushima and
coworkers [198, 201] used cyclic amidine catalysts
(e.g. 1,5,7-triazabicyclo[4.4.0]dec-5-ene, TBD) to
de-polymerize PET].
Other authors used very specific catalyst like tetrab-
utoxy titanium, titanium tetraisopropoxide, zeolite,
Zn/Al-hydrotalcite, ZnO, metal oxide spinels (Co3O4

and Mn3O4), mixed metal oxide spinels (ZnMn2O4,
CoMn2O4, ZnCo2O4) and γ-Fe2O3 as alternatives to
common catalysts [11, 187, 200, 210, 221].
In addition, glycolysis leads to the formation of un-
desired cyclic oligomers [128]. The monomers and
low molecular weight oligomers obtained from gly-
colysis of PET were generally used for impaired ap-
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Table 3. Reaction conditions and yields of PET glycolysis (2. continue)

aEG: Ethylene glycol. bNPG: Neopentyl glycol. cDEG: Diethylene glycol. dPG: Propylene glycol. eDPG: Dipropylene glycol. fBG: Buty-
lene glycol. gTEG: Triethylene glycol. hPTMO: Poly(tetramethylene oxide). iPEG: Polyethylene glycol. jTEEG: Tetraethylene glycol.
kPluronic L31: Terpoly[poly(oxyethylene)-poly-(oxypropylene)-poly(oxyethylene)]. lTEA: Triethanol amine. mBHET: Bis(hydroxy eth-
ylene) terephthalate. nBD: Butanediol. oDEA: Diethanol amine. pTMP: Trimethylol propane. qNo pressure was given in the experimental
section, thus, atmospheric pressure was assumed. rCu(OAc)2-[Bmim][OAc]: 1-butyl-3-methylimidazolium acetate-promoted copper ac-
etate. sZn(OAc)2-[Bmim][OAc]: 1-Butyl-3-methylimidazolium acetate-promoted zinc acetate. t[bmim]Br: 1-butyl-3-methylimidazolium
bromide. uTBD: 1,5,7-triazabicyclo[4.4.0]dec-5-ene.

Reaction product
Yield

[%]
Reagent

Reaction

temperature

[°C]

Reaction time

[hours]

Pressure

[bar]
Catalyst Reference

Oligomers 
[300–500 g·mol–1]

not given DEGc 200–220 4 1q Manganese acetate [177]

Oligomers
[450–510 g·mol–1]

not given DEGc 210 4 1q Manganese acetate [178]

Oligomers
[497 g·mol–1]

not given BDn not given not given 1q none [221]

Oligomers
[534 g·mol–1]

not given DEGc 190–200 8 1q none [189]

Oligomers
[881 g·mol–1]

not given TEGg not given not given 1q none [221]

Oligomers
[900 g·mol–1]

not given DEAo 170–210 3 to 4 1q Manganese acetate [195]

Oligomers
[900 g·mol–1]

not given TEAl 170–210 3 to 4 1q Manganese acetate [195]

Oligomers
[900 g·mol–1]

not given DEAo 180–210 3 to 4 high pressure Manganese acetate [196]

Oligomers
[900 g·mol–1]

not given TEAl 180–210 3 to 4 high pressure Manganese acetate [196]

Oligomers
[900 g·mol–1]

not given DEGc 180–210 3 to 4 high pressure Manganese acetate [196]

Oligomers
[900 g·mol–1]

not given TMPp 180–210 3 to 4 high pressure Manganese acetate [196]

Oligomers
[957g·mol–1]

not given DEAo 190–200 3 1q Manganese acetate  [175]



plications, such as modifiers for PVC or other poly-
mer composites [183, 190, 208, 222]. Further, these
glycolyized products were applied for synthesis of
co-polymers of undefined composition [174, 179,
181, 182, 194, 219].

2.4.7. Aminolysis/ammonolysis

Aminolysis and ammonolyis were developed, since
the reactivity of the amine-group is higher than the
hydroxyl-group in glycols or alcohols used in glycol-
ysis or alcoholysis of PET [223, 224]. Further, draw-
backs of other conventional chemical recycling meth-
ods (hydrolysis, methanolysis) like high temperature
and high pressure conditions were aimed of being
avoided by aminolysis and ammonolysis. After de-
polymerization, in general, the reaction products
were applied as curing agents for epoxy resins, as com-
ponents for polyurethane synthesis or as plasticizers
[225–228].
The general reaction scheme of aminolysis and am-
monolysis is depicted in Figure 6. Here, correspon-
ding diamides of terephthalic acid are obtained.
Aminolysis and ammonolyis are generally conducted
at temperatures between 25 and 190°C. Generally no
high pressure is applied and reaction time may vary
from few hours to several days (Table 4). The chem-
icals such as alkyl amines or liquid ammonia are
used in excess for PET de-polymerization (Table 4).
Aminolysis and ammonolysis mainly yielded the
corresponding monomeric amides of terephthalic
acid [223, 226–234].
The de-polymerization agent, which was mainly ap-
plied, was ethanol amine (EA, Table 4). EA was used
to synthesize the bi-functional monomer bis(2-hy-
droxyl-ethylene) terephthalamide (BHETPA) in yields

between 62 to 91% for further polymer syntheses
(Table 4) [223, 224, 230, 232]. Further, but less used
chemicals for aminolysis or ammonolysis of PET are
methyl amine (MA), liquor ammonia (NH3) and eth-
ylene diamine (EDA). As in case of EA, these chem-
icals lead to the formation of corresponding bi-func-
tional monomers of terephthalic acid, which could
be applied as curing agents for epoxy resins [227,
228, 233]. Hoang and Dang used excess EDA to de-
polymerize PET to low molecular weight oligomers
(250–820 g·mol–1, Table 4 ). Removal of solid residues
by filtration and additional purification gave these
oligomers in yields of 30%. These were assumed to
be used for synthesis of polyamides or polyimides
[235]. Only little use of hydrazine hydrate, triethyl-
ene tetramine, tetraethylene pentamine, allylamine,
di- or triethanol amine for aminolysis of PET was
made. With these chemicals corresponding diamides
of terephthalic acid were obtained, which were con-
secutively applied as additives in concrete mixture
or used for further synthesis of antibacterial chemi-
cals [230, 233, 234].
As for glycolysis, different catalysts were also ap-
plied for aminolysis, ammonolysis. Mainly metal ac-
etates were used (zinc acetate, sodium acetate, potas-
sium acetate,Table 4) [226, 227, 231, 232]. Shukla
and Harad studied the effect of sodium-, potassium
acetate and acetic acid on efficiency of PET-aminol-
ysis. They found sodium acetate as the most efficient
catalyst, followed by potassium acetate and acetic
acid [232]. More et al. [224] compared zinc acetate
and sodium acetate for PET-aminolysis and found
(as in case of glycolysis) zinc acetate to be more ef-
ficient for aminolysis reaction. Mittal et al. [228] com-
pared aminolysis and ammonolysis using cetyl am-
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Figure 6. Chemical recycling methods of PET ((a) Aminolysis, (b) Ammonolysis)



monium bromide as catalyst. Generally, both reac-
tion types yielded less monomeric reaction product
without catalyst. Using the catalyst, they found a
higher yield for aminolysis (94%, Table 4) than for
ammonolysis (38%, Table 4). Compared to the afore-
mentioned catalysts, di-butyl tinoxide used by Tawfik
and Eskander [223] was less efficient for aminolysis
of PET (Table 4).
All described chemical recycling methods require ei-
ther high pressure apparatus (hydrolysis, methanoly-
sis) or toxic chemicals (alkyl amines, glycols,
methanol, sulfuric acid, nitric acid) to yield mainly
monomers of PET. In case of glycolysis precise
process control is of crucial importance either to pre-
vent re-polymerization or other side-reactions [8, 9,
148, 153, 226].

2.4.8. Controlled de-polymerization using

blocking chain scission

This method was developed by Geyer et al. [95] as
an alternative chemical recycling method which pre-
vents uncontrolled de-polymerization. Furthermore,
it overcomes some of the drawbacks of the methods
described in earlier sections: The need of high tem-
perature and high pressure conditions, the use of
toxic and environmentally problematic chemicals
(either the de-polymerization agents or the catalysts)
and considerable amounts of solvents. The general
reaction scheme of blocking chain scission is depict-
ed in Figure 7.
PET was melt-mixed with stoichiometric amounts
of adipic acid to yield tailored oligomers of defined
molecular weight. With this approach defined oligo -
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Table 4. Reaction conditions and yields of PET aminolysis, ammonolysis

aEA: Ethanol amine. bMA: Methyl amine. cDEA: Diethanol amine. dTEA: Triethanol amine. eEDA: Ethylene diamine.
fTETA: Triethylene tetramine. gTEEPA: Tetraethylene pentamine. hNo specific pressure was given in the experimental section, thus,
atmospheric pressure was assumed.

Reaction product
Yield

[%]
Reagent

Reaction

temperature

[°C]

Reaction

time [min]

Pressure

[bar]
Catalyst Reference

Monomers 38 NH3 40 180–2700 1h Cetyl ammonium bromide [227]

Monomers 62 EAa 190 2 to 12 1h Dibutyltinoxide [222]

Monomers 75 EAa 160 2 to 12 1h Sodium acetate [223]

Monomers 76 EAa 172 18 1h Acetic acid [231]

Monomers 81 EAa 160 2 to 12 1h Zinc acetate [223]

Monomers 85 EAa 172 18 1h Sodium acetate [228]

Monomers 86 Hydrazin hydrate 114 20 1h none [230]

Monomers 87 EAa 172 18 1h Potassium sulphate [231]

Monomers 91 EAa 172 18 1h Sodium acetate [231]

Monomers 94 MAb 40 180–2700 1h Cetyl ammonium bromide [227]

Monomers not given Allylamine 180 not given 15–20 none [233]

Monomers not given EAa 180 not given 15–20 none [233]

Monomers not given DEAc 180 not given 15–20 none [233]

Monomers not given TEAd 180 not given 15–20 none [233]

Monomers not given EDAe Ambient
temperature

0–300 1h none [225]

Monomers not given MAb 40 180–2700 1h Cetyl ammonium bromide [232]

Monomers not given NH3 40 180–2700 1h Cetyl ammonium bromide [232]

Monomers not given NH3
Ambient

temperature
180–2700 1h Zinc acetate [226]

Monomers quantitative TETAf 130–140 18 1h none [229]

Monomers quantitative TEEPAg 130–140 18 1h none [229]
Oligomers

[250–820 g·mol–1]
30 EDAe 100 42 1h none [234]

Figure 7. Blocking chain scission of PET using adipic acid [95]



mers of molecular weights in the range of 960–
23500 g·mol–1 were readily prepared, which was not
possible with former chemical recycling methods
[95]. However, this method requires sorted PET-ma-
terial, which has to be free of contaminants or other
polymer species.
Geyer et al. [236] used these defined building blocks
to synthesize novel block-co-polyesters with tailored
surface properties. By the combination of defined
PET- and PEN-oligomers PET-PEN-block-co-poly-
esters with tailored block segment composition were
prepared. In dependence of the block segment com-
position it was possible to control the dispersive sur-
face energy and specific desorption energy of these
block-co-polyesters. By tailoring these surface prop-
erties, these PET-PEN-block-co-polyesters could be
applied as compatibilizing agent to prepare transpar-
ent blends of PET and PEN. Since PET and PEN are
originally immiscible, leading to opaque products,
in contrast, such blends of PET and PEN made trans-
parent could now be used for high-value added ap-
plications. For example, as encapsulating material for
organic photovoltaics, which require maximum trans-
parency for optimum efficiency of the solar cell. Fur-
thermore, such blends exhibit an improved storage
modulus and higher glass transition temperatures
compared to pure PET, which makes them especially
interesting as materials for hot re-fillable or pasteur-
izable food packaging [236, 237].

3. Conclusions

A thorough review of conventional and exceptional
PET-recycling with a special emphasis on on chem-
ical methods has been given. Energetic recycling
methods like incineration or pyrolysis lead to a down-
cycling of PET (due to thermal degradation), using its
reaction products either directly (use of the released
heat of combustion) or indirectly (use of obtained
chemicals as alternative for fossil fuels) for energy
recovery. Although carbonization produces coal, ac-
tive carbon or adsorbents for chemicals as more eco-
friendly applications, again, due to thermal degrada-
tion, this method remains a downcycling of PET. On
the other hand, thermo-mechanical recycling of PET
leads to a downcycling of the material either, since
thermal conditions caused thermal degradation of
PET and reduced physical and mechanical properties
of the recycled PET. In contrast, chemical recycling
methods, which provided complete de-polymeriza-

tion of PET yielding monomers, enabled value-added
re-usability of reaction products like the synthesis of
virgin PET. However, these methods require high
temperature and high pressure apparatus. Further,
large amounts of chemicals are consumed for de-poly-
merization and consecutive separation as well as
purification steps. Thus, such chemical recycling
methods impose toxic and ecological issues. The al-
ternative of producing PET-oligomers with chemical
recycling methods is not well solved either. Although
glycolysis is generally conducted without high pres-
sure conditions, again, considerable quantities of
chemicals are required for partial de-polymerization,
separation and purification steps of the reaction
products. Hence, as in case of complete de-polymer-
ization of PET, partial de-polymerization imposes
toxic and ecological issues either. Further, these less
well-defined low molecular weight oligomers are
within a heterogeneous mixture of by-products such
as monomers, di- or trimers. Moreover, these hetero-
geneous reaction products are generally used for im-
paired applications such as dispersants or plasticiz-
ers. An alternative chemical recycling of PET was
given by the controlled de-polymerization of PET
using blocking chain scission with defined amounts
of the de-polymerization agent. This method pro-
duced PET-oligomers of well-defined molecular
weights in a greater range than existing chemical
methods (like glycolysis). These building-blocks en-
abled the synthesis of tailored block-co-polyesters
as potential compatibilizers to produce transparent
PET-PEN-blends, which are suitable as an encapsu-
lation material for photovoltaic cells or for hot re-
fillable and pasteurizable food packaging.
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